
Cross platform mobile application development:
Lessons learned
Dominik Dejmek, Martin Hinterndorfer, Stefan Schuster

Agenda

• QuickRTAN - The app we are talking about
• Overview
• Communication
• Mobile Development
• UI
• Project Management / Coordination
• App Stores

The app we are talking about:
QuickRTAN

QuickRTAN

• App + Server component for secure TAN transfer
• Public/Private key encryption for TANs
• QR-Codes for information transfer

QuickRTAN

DEMO

Overview

Client components

Cryptography

Communication

QR-Code Reader

Client components

Cryptography

Communication

QR-Code Reader

Client components

Cryptography

Communication

QR-Code Reader

Overview

Server components Client components

Backend Service

Cryptography

Database

Communication

QR-Code Generator

Cryptography

Communication

QR-Code Reader

Overview

• Mobile target platforms
• Android
• iOS
• Blackberry
• Windows Phone 7
!

• Requirements
• QR-Code scanning (and generating)
• Network communication between Client and Server
• Cross platform crypto

Communication

QR-Codes

• QR-Codes designed for text
• Various settings

• Encoding
• Error correction level

• Reliable scanning dependencies
• Code Size
• Screen
• Smartphone Camera (Moiré pattern)
!

• ZXing to the rescue
• http://code.google.com/p/zxing/

~ 1200 characters

http://code.google.com/p/zxing/

Data Format

• Various data exchange formats available
• XML
• JSON
• CSV
• Binary formats

• BSON
• Google Protocol Buffers

• Proprietary format
!

• Choice: JSON
• Good support in all languages
• Less verbose than XML
• Good readability

Communication

• Various mechanisms available
• Web Services

• SOAP
• RPC
!

• Choice: JSON-RPC
• Benefits from already existing JSON stack
• Simple protocol (simple to implement manually if no library for platform available)
• Cross platform (compared to e.g. RMI)

Mobile Development

Programming languages

• Native applications result in multiple programming languages
• Java (Server, Android)
• Java-ME (Blackberry)
• Objective-C (iOS)
• C# .NET (Windows Phone 7)
!

• Different ...
• development tools
• workflow
• setups

• ... for every platform

Android

• Good Android Development Support
• Idea IntelliJ
• Eclipse
!

• Android SDK
!

• Android Debug Bridge (adb)
!

• Emulator (delivered by Android SDK)

Android - Development

• Different Java default behavior
• Cipher.getInstance(“RSA”) => Problematic
• Cipher.getInstance(“RSA/None/PKCS1”) => OK
!

• Unit-Tests => use the right SDK ;-)
!

• Android compiles into .class and then into Dalvik .dex
!

• Easy Code Sharing => Java Libraries
!

• Hard to cover all Versions and Devices

Android - Simple App Deployment

• Set Phone into Development-Mode
!

• Connect to USB
!

• Compile App
!

• Sign App (automatically by Build Tools)
!

• Deploy App to Phone/Emulator
!

• Debug like in “normal” Java

Android - Activity

• No void main()
!

• Define Permissions (Internet, Camera, ...)
!

• Activity Lifecycle
!

• Android Activity Stack

iOS - Objective C

• Apples programming language of choice
• Seems exotic [syntax uses:a lotOf:[square brackets]]
• Object Oriented dialect of C

• Can be mixed with C and C++ code (an libraries)
• Modernized by Apple over time

• ARC (Automatic Reference Counting instead of manual memory management)
• Syntax shortcuts (dot accessors, literals)

• Fully fledged OO programming language => object structure can be kept similar
• Conventions

• Different programming language conventions lead to subtle differences
• Unique features

• Categories (add methods to existing classes without inheritance)
• Makes some helper classes unnecessary

iOS - Code Sample

@interface ExampleObject : NSObject {
!
@property(nonatomic) NSNumber *numberData;
@property(nonatomic, retain) NSString *stringData;
!
- (id)initWithNumberData:(NSNumber*)numberData stringData:(NSString*)stringData;
!
@end

@implementation Barcode
!
@synthesize numberData;
@synthesize stringData;
!
- (id) initWithNumberData:(NSNumber*)numberData stringData:(NSString*)stringData {
 ...
}
!
@end

ExampleObject.h

ExampleObject.m

[myExampleObject initWithNumberData:@42 stringData:@”Hello, World”];

call

iOS - Development Tools

• Apple IDE: Xcode
• Unavoidable for some Tasks

• Device Management
• Interface Designer
• Project/Compiler Settings
!

• iOS Simulator
• Careful: No Emulator
!

• On-Device Debugging and Profiling
!

• Alternative IDEs:
• JetBrains AppCode

iOS - Obstacles

• Complicated device management
• Developer creates a certificate
• Development device registration with Apple (limited)
!

• Complicated Code Signing (also for development)
• Developer certificate gets sent to Apple
• Signed by Apple for certain Developer Profile
• Different Profiles for different App-IDs (and use cases)
• Certificate has to be installed on device
• ...

iOS

Blackberry

• Michi bitte

Windows Phone

• Bernhard bitte

UI

Native UI

• Different OS have different native looks
• Different philosophies
• Our approach: An iPhone app should look like an iPhone app

Standard navigation bar

Standard table editing controls

Standard table view

Standard background

Standard tab bar

Native UI
Typical multi-screen layout

Typography based UI

UI similarities

• Of course the apps should share a common identity on all platforms
• Similar ...

• colors
• wording
• assets (icons, graphics, logo)
• buttons (where to find what button)
• workflow

UI on Android

• XML Layout Design
• UI Designer DroidDraw
• Wide Range of Screen Sizes

• XHDPI ~320dpi ... 7 - 11 inches
• HDPI ~240dpi ... 4 - 7 inches
• MDPI ~160dpi (Baseline) ... 3 - 5 inches
• LDPI ~120dpi ... 2 - 3 inches

• Scaleable Graphics with 9-Patch
• Big Changes since Version 4.0 with Layout Guide

• Tabs
• Action Bar

• Localization
• String files

UI on iOS

• Static layouts (320x480)
• Retina display still works with a logical 320x480 coordinate system - just higher DPI

• 640x960
• @2x assets (icon.png and icon@2x.png)

• Interface Builder for basic UIs
• Drag and Drop Editor for simple UI elements

• Programmatic UI creation enforced for complex UI
• TableView
• Typical Objective-C delegate structures
• Off-Screen rows are reused programmatically (performance)

• Localization (L10n, I18n) support built in
• String files
• UI Files
• Assets (images)

UI on iOS

Project Management
Coordination

Coordination

• The most important part: Precise interface definition
• Data structure definition of every interface 

(in our case: JSON-RPC, Barcode)
• Exact specifications 

(byte order, crypto algorithms)
!

• Master document which documents all interfaces
• Living document
• All team members need to know and understand this document by heart
• Real time collaboration helps

• Google Docs
• Etherpad
• Or our Services :P 

(Spaaze, Mind42, SimpleMeet.me)

Code-Organization

• Real code sharing only possible between Server and Android app
!

• On other platforms:
• Use same naming conventions

• Same class names help when talking to each other
• Calling a BindingResponse BindingRequest on the mobile device (because from

the view of the mobile device it’s a request to the server) is not helpful
• Use same code structure

• Having the same infrastructure of data objects helps when talking to each other
• Given structure can be used as boilerplate for ports on other platforms

Prototyping

• Especially in the beginning
• Simple prototyping tests
!

• Crypto
• Are the crypto libraries compatible to each other (decrypt/encrypt/sign/verify)

!
• Data formats

• Are compressors compatible (zlib stream vs. gzip container)
!

• RPC
• JSON-RPC interface working (serialization of libraries could differ - Jabsorb by

default e.g. adds and expects a Java class wrapping layer)

Version Management

• Protocol needs to be versioned
• Server and clients need to talk the same version
• Interface document version = protocol version
• Protocol version also part of the protocol

• Server can detect requests with older version
• Mechanism to enforce updates
• Additional versioning of certain components depending on the project 

(binding version)
!

• Update rollout
• Server and clients should all be updated at the same time

Platforms

• Lead platform
• Either planned (iPhone version = main version, all other ports)
• Or by incident (established itself)

• e.g.: Android/iPhone client is always first implementing new UI and features
• Other platforms have to follow
• Lead platform implementation should be good

• Guiding all other platforms
!

• Testing
• Test device for every platform required
• All important/supported platform combinations (iPhone 3G with iOS 4, ...) should

be tested regularly
• Update process should also be tested (ORM migration between versions, ...)

App Stores

App Stores

• Different App Stores - Different Policies
• Developer program fees
• App reviews
• Policies

• App policies
• Marketing policies

Android Play Store

• Registration USD 25,-
!

• Immediate Upload possible after Registration
!

• Only Signed-Apps (Self-Signed)
!

• Updates only with same Signing-Key possible
!

• Distribution Settings:
• Country
• Version

Apple AppStore

• iOS Developer Program
• $99 + paperwork (commercial register extract, phone verification, ...)

• App & Update Review
• ~1 week

• Strict policies
• Refusal due to use of deprecated or private API, ...
• No mentioning of competing platform

• Marketing policies
• More paperwork for marketing materials (HiRes device images, AppStore button)
• Strict policies of material usage
!

• For selling apps (non free apps)
• More paperwork

Encryption Registration

• US BIS (Bureau of Industry and Security) requires registration (or in worst case
classification) for export of cryptography

• Apple servers located in the US
• Apple requires ERN (Encryption Registration Number)
• ERN usually enough for mass market standard cryptogrphy

• Registration with SNAP-R (online document system of BIS)
• Online submission of required forms
!

• BIS got flooded with requests after Smartphone/App revolution
• Nowadays all online ...
• ... and ERN is enough (self classification)
• Still: Legal-speak paragraph hell

Problems

Problems

• TODO: Some more slides for lessons learned?
!

• Biggest problems we had
• Getting crypto work?
• JABSORB wrapper?
• Exception Handling?
• Security (sensitive data on devices, self signing, rooting, jailbreaking, ...)

• Handling keys
• Key handling (developer keys/certificates)?
• ...?

Summary

Summary

• Most important
!

• Project Management
• Precise documentation of interfaces
• Versioning
• Good communication during “hot phase” (integration)
!

• Technical
• Code Organization

• Naming
• Structure
• Sharing

• Shared repository (code, assets, documents, ...)

Thanks for your attention

Questions?

